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We derive exact criteria for the highest capillary waves on sheets of fluid and present 
the profiles for both symmetric and antisymmetric waves. In  addition we provide 
correct definitions of the phase speed of these waves. Previous ‘essentially nonlinear ’ 
solutions to the problem are shown to have been misinterpreted. 

Trajectory properties of particles in both types of wave are presented. We also give 
results for the drift velocity ratios as a function of the mean displacement of a 
streamline from the free surface. Many of the results are exact, being given in terms 
of elliptic functions and elliptic integrals. An application to wave motion in thin 
films on pipe walls is considered. 

1. Introduction 
Two recent papers by the present author have considered the particle trajectories 

in nonlinear waves influenced by surface tension and gravity. In the first (Hogan 
1984) gravity was neglected entirely and an exact solution for the wave profile due 
to Crapper (1957) was used in the calculations. In  the second paper (Hogan 1985a), 
both restoring forces were included and computer generated solutions were used. 
Both these papers considered the wave motion on an ideal fluid of infinite depth. 

The present paper is a further generalization of Hogan (1984). Gravity is neglected 
but the effect of the depth of the fluid is considered. Kinnersley (1976) has conducted 
an investigation into the shape of the wave profile in this case, with nonlinearity fully 
taken into account. He found not one generalization of Crapper’s (1967) solution but 
two, corresponding to symmetric and antisymmetric waves on a fluid sheet. He 
derived exact expressions for the profiles, in terms of elliptic functions and elliptic 
integrals. Taylor (1959) had originally calculated the linear form of these waves. We 
use Kinnersley’s results here in the same manner as Crapper’s (1957) results were 
used by Hogan (1984). 

In $2 we introduce the work of Kinnersley (1976) and describe the problem. In $3 
we extend his work to give exact criteria for highest waves and present them in 
graphical form for the first time. It is shown in $4 that Kinnersley’s parameter c is 
not equivalent to either definition of the phase speed as given by Stokes (1847). This 
leads to the intriguing result that symmetric waves on a very thin sheet of fluid have 
zero phase speed. We present trajectory results as seen in two different reference 
frames in $5 and examine their connection with results from Hogan (1984). In $6 the 
trajectories and drift velocity ratios are presented in graphical form. We discuss these 
results in $7. 
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2. The work of Kinnersley (1976) 
It was Taylor (1959) who first showed that there are two types of capillary wave 

possible on the surface of a fluid sheet. One type is symmetric and the other type 
antisymmetric with respect to the centreline of the sheet. Taylor’s analysis was valid 
only for small amplitude. In  the limit of a very thin sheet, he showed that the 
antisymmetric waves were non-dispersive. He confirmed his theoretical observations 
in a series of elegant experiments. 

Kinnersley (1976) relaxed the assumption of small amplitude and was able to 
derive exact solutions involving elliptic functions and elliptic integrals. In the limit 
of sheet thickness tending to infinity, both solutions tend to the nonlinear solution 
of Crapper (1957), whose method of solution Kinnersley used. 

Kinnersley considered steady, symmetric, periodic nonlinear capillary waves 
which propagate on the surface of a sheet of incompressible inviscid fluid of finite 
thickness. The motion in the fluid is two-dimensional and irrotational and the wave 
is moving to the right. By moving in a suitable frame of reference, the flow is reduced 
to a steady state whose Cartesian axes are chosen with x measured horizontally to 
the left (upstream) and y vertically downwards. We use Kinnersley ’s notation 
throughout, including the convention that the modulus of elliptic functions is 
omitted, since all functions of velocity potential $ have modulus k and all functions 
of stream function $ have modulus k‘, where k2 + F2 = 1. The centreline of the sheet 
is given by $ = 0 and the free surface by $ = f B. Over one crest-to-crest wavelength 
q5 ranges from 0 to 4K(k) where K(k) is the complete elliptic integral of the first kind. 

For symmetric waves (case I b ) ,  Kinnersley found that relative to axes moving with 

2E($)-k”$-2k2 sn$ cd$+ (2.1) 

speed c, 
x=-[ S 

pc2Akf2 

where we denote the surface tension by S and the density by p. E($)  is the incomplete 
elliptic function of the second kind. The parameter A is related to the free surface 
$ = + B  by Kinnersley’s equation (36). The wavelength A, crest-to-trough amplitude 
a and depth, or sheet semi-thickness, h (defined as the distance from centreline to 
free surface trough) are given by his equations (35), (38) and (39). The parameter c 
is given by his equation (40), although we shall see later that c does not equal either 
accepted definition of the phase speed. 

For antisymmetric waves (case I1 b), he found 

where A, a, h and c are given in this case by Kinnersley’s equations (43), (46), (47) 
and (49). The parameter A is related to B by his equation (44).t 

t k+O corresponds to finite amplitude waves on water of great depths unless + is small and + + O  
corresponds to waves on a thin sheet unless k is small. Taylor’s (1969) results correspond to having 
both k and + small. 
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Crapper’s (1957) solution (case I11 of Kinnersley) is given in this notation by 

2sin+ 1 S x=- 
pc2A [’ + cosh 9 - cos$ ’ 

2sinh+ 1- y = -  pc2A [‘-cosh$-cos$ S 

The parameter A is not identical to Crapper’s A, but they are simply related.? 
The purpose of this paper is to investigate the particle trajectories of waves 

described by (2.1)-(2.4), in a similar manner to the investigation by Hogan (1984) 
of waves described by (2.5)-(2.6). We also give criteria for the highest waves. 

Finally we note that Kinnersley derived his solutions under the assumption that 
each streamline within the fluid could be a free surface if the fluid above is removed. 
Thus it is sufficient to consider only the highest wave and its streamlines in each case. 

3. Highest waves 
In each of the above cases, the waveform has a maximum amplitude which occurs 

when the free surface touches itself to enclose a bubble, usually in the trough. We 
can put this criterion in explicit form by noting that we require a vertical tangent 
a t  x = ih for $ 9 2K. 

For case I b, we require 
he-2(1+k2) = 2L cn$ ds$, (3.1) 

where L($) = 4E-2E($)+kf2$-2kf2K. (3.2) 

Here E = E(k) is the complete elliptic integral of the second kind. We solve 
(3.1)-(3.2) by fixing k and finding a solution for $( 4= 2K, which corresponds to the 
trough). The value of B = B,,, corresponding to the highest wave is then found from 

k(L cd$+2 sn$) 
dnBmax = L+2k2 sn$ cd$’ (3.3) 

For case I I b ,  we fix k and solve for $( =+ 2K) from 

Iz sn $ dn $ = 2( 2 dn2 $ - 1) [I cn q5 + sn $ dn $1, (3.4) 

where I ($)  = 4E- 2E($) + $ - 2K, (3.5) 

and we find the maximum value of B from 

k ( I  cng5+2 sn$ dnq5) 
I 

ds B,,, = 

Equations (3.3) and (3.6) are obtained simply by setting x = ih. 
When k+O, both these criteria tend to Crapper’s (1957) equation (67), with a 

suitable adjustment to the origin of q5. 
We present highest-wave profiles in figures 1 and 2. Figure 1 (a)  contains profiles 

for the symmetric wave (case I b )  with k = 0.25 and figure 1 (b) with k = 0.75. For 
this case, the highest wave in the limit k = 1 corresponds to a / h  = 0.5, a / h  infinite 
and tan B,,, = 1 (B,,, = in). It is represented by a semicircle. In figure 1, the full 
wave is obtained by direct reflection in the line B = 0. For the antisymmetric waves 

Equation (2.4) of Hogan (1984) and equation (2.2) of Hogan (19856) both contain an incorrect 
factor (S lpk) .  The correct factor should be (Skip). 



550 S. J .  Hogan 

FIGURE I.  (a) Symmetric (k = 0.26) capillary wove streamlines for BIB,,,,, = 1 ,  0.9, 0.75, 0.5, 0.2 
and 0, ( B ,  = 2.014007). (b) Symmetric (k = 0.75) capillary wave streamlines for BIB,,,, = 1, 
0.9, 0.76, 0.6,0.2 and 0, ( B ,  = 1.022780). 

BIB,, = 1 (4 

BIB,,,, = - 1 

FIGURE 2. (a) Antisymmetric (k = 0.26) capillary wave streamlines for BIB,,, = f 1, f0.9, 
f0.76, f0.6, f0.2 and 0, (BmaX = 1.986029). (a) Antisymmetric (k = 0.854) capillary wave 
streamlines for B/B,, = fl, (Bmax = 0.009685). 

(case IIb) the value k = 1 is not reached. Thus in figure 2 (a) we show the highest-wave 
profile and streamlines for k = 0.25 and in figure 2 ( b )  for k = 0.854. In both cases 
we have included the line y = 0 for reference only. There is clearly a limit to the value 
of k corresponding to the trough bubble on top meeting the crest bubble underneath.! 
We find this equivalent to B,,, = 0, k = 0.858517, a / h  = 2.820646. These limiting 
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values for k and a/h  are higher than those given by Kinnersley (k2 = 0.73, a/h = 2.7). 
Here the highest-wave criterion reduces to I = 0, from (3.6), which Kinnersley’s 
values do not satisfy exactly. 

4. Phase speeds 
In this section we show that the parameter c in Kinnersley’s work does not equal 

either definition of the phase speed, as given by Stokes (1847). 
Kinnersley derives velocity components uK, vK relative to a frame of reference in 

which the wave profile is steady. Thus the horizontal velocity u relative to the 
laboratory is given by 

where c p  is the speed of the wave crests. 
U+cp = U K ,  (4.1) 

Now if we denote an average over one wavelength as an overbar defined by 

then from Stokes (1847) we can immediately write, since the motion is irrotational, 

(4.3) c p  = GKlB - 0 ,  

independent of the wave symmetry. 
For case I b  we find, from Kinnersley, 

kf2K 
!P= 
c (2E-k”K)’ 

and for case I1 b, 

%= (4P- 1) K +  4( 1 - 2k2) E 
c 3(2E--K) 

(4.4) 

(4.5) 

Thus in general c + cp .  We note that when k = 0, that is for fluid of great depths, 
we find c p = c  in both cases, confirming Crclpper’s (1957) choice of integration 
constant for Bernoulli’s equation. In  addition we find for k x 1 that (4.4) gives us 
for case I b  (symmetric) waves 

and so c p / c  = 0 for k = 1. For case I I b  (antisymmetric) waves the limiting case 
k = 0.858517 corresponds to c p / c  = 2.020924. 

Stokes (1847) gave another definition for the phase speed of waves which we will 
denote by cq. It is given by 

Thus cq is the mean horizontal velocity of the centre of mass of the wave. For a fluid 
of infinite depth cp  = cq, but in general they are unequal. We can evaluate cp 
analytically for all values of k. We transform to the (q5, +)-plane and this introduces 
a Jacobian 1/q8 into both integrands where q2 = u&+wk is the particle speed. The 
quantities uK and q2 are given in equations (27) and (28), using table 1 ,  of Kinnersley. 
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0 0.2 0.4 0.6 0.8 1 .o 
k 

0 0.2 0.4 0.6 0.8 
k 

FIGURE 3. (a) The ratios c,/c and c,/c m a function of k for symmetric waves. 
for antisymmetric waves. 
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Since the flow is irrotational it is sufficient to evaluate both integrands a t  B = 0. The 
resulting integrals are then very simple to perform. Thus for case I b  we find 

and for case I1 b 

C 3k"(2E--k"K) >= 
c [8( 1 + k2)  E -  (5 + 3kZ) k"K]' 

c 2E-K 4=- 
C K '  

In  addition for k x 1, we find from (4.8) that 

(4.9) 

(4.10) 

Thus cq/c = 0 when k = 1 for symmetric waves. For entisymmetric waves, the 
limiting case k = 0.858517 has cq/c = 0.142634. In general c 9 cq. 

In  figure 3(a)  we have plotted c,/c and cq/c us. k for case I b  (symmetric waves). 
Similarly in figure 3 (b) we have plotted c,/c and cq/c vs. k for case I I b  (antisymmetric) 
waves. We note that in this case cp  x cq for k as large as 0.3. 

In general c does not equal either definition of the phase speed, as given by Stokes 
(1847). 

5. Trajectory properties 
We calculate the particle trajectories in two frames of reference. In  frame P, the 

phase speed of the waves is c p  and in frame Q it is cq. The Cartesian axes of these 
frames are (X,, Y) and ( X q ,  Y) where 

x, = x-c , t ,  xq = x-c*t ,  Y = y ,  (5.1) 
and so we must calculate t ,  the time taken by the particle to move from q5 = 
q5 = q52 along a streamline $ = $,. From Longuet-Higgins (1979 $3)  we know that 

to 

where z = x+iy and x = $+i@. 

surface we set @, = B and let B vary between 0 and B,,,. 
Since any streamline of the waves under consideration can be regarded as a free 

Thus for case I we must evaluate 

where a = dn B for case Ia and a = k nd B for case I b .  
For case I1 the required integral is 

(5.4) 

and here /3 = cn B for case I I a  and /I = k sd B for case IIb. Thus in general we have 
t = ( S / p c S A )  J .  

It is possible to evaluate both these integrals in terms of known functions with due 
care being taken with the limits B = 0, k = 0 and k = 1. Extensive use is made of 
formulae given in Byrd & Friedman (1971). 
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We find for case I, 

J =  4 4 )  
[P( 1 -a2) + 2k2a2(3- a2) - a4(3 + a”] 4a2 

(1-a2) (k2-a2 ) ‘ - ( l - a 2 )  (k2-a2) 

4a2r2  (a4 - k2)  
+ (1 -a2)2 (a2- kZ))” 

4a2 sn$ 
(1 -a2)2 (a2- k2)  (1 -a: sn2 $) [(a2 - k2)  cn q5 dn q5 + akt2] + 

4a(a4 - k2)  - a 2 1  t a2-k2 t + (1 - a2) (a2 - k2)  (L) (a2 - k2)  tan-’{(-) 1 -a2 sn$}, (5.5) 

where a: = (k2-a2)/(1 -a2) and n($, at) is the incomplete elliptic integral of the 
third kind. The limit B = 0 is well-behaved but the explicit form oft, is not needed 
in this case. The limit k = 0 can be shown to be equivalent to equation (4.15) of 
Hogan (1984). Equation (5.5) has also been checked by direct differentiation. 

For case 11, we obtain 

where p: = $/($- 1).  
The limit B+O is straightforward. The limit k+O behaves just as for case I and 

(5.6) has been checked by direct differentiation. 
The total time, T, taken to complete one orbit is obtained by evaluating t between 

the points $ = 0 and q5 = 4K. In this way we find the time-averaged drift velocity 
U,  given by 

and the distance through which a particle moves in one orbit, [XI, given by 

(5.7) 

Following Kinnersley, we restrict our attention now to cases I b  and IIb. Thus we 
find for example 

PI= nc4 I? ns4 (4 dn2 B(k2  - dn4 B )  n(a:) + 4kt2 dn2 B cn2 B sn2 BE 
h kt2(2E- k’2K)2 

+cn2B(K2 cn2Bdn4B+2 dn2B(3 dn2B-k2)-(3dn2B+k2))K),  (5.9) 

where a: = - k2 so2 B and 

c T  
[(4k2-1) K+4(1-2k2)m (4 dn2B(dn4B+k2k’2 sn4B)n(a:) z,= nc4B 

h 3(2E-IQ2 
+4 dn2B cn2B sn2BE-cn2B(k2 sn2B+3 dn2B)K).  

We note that in both (5.9) and (5.10) all the elliptic integrals are complete. 

(5.10) 
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When B = 0, (5.9) becomes 
c T [(3ka+5)kf2K-8(k2+l)E]K D= 

h 3(2E - kf2K)’ 2 

and (5.10) becomes 

PII= c T [(4k2-l)K+4(1-2k2)E]K 
h 3(2E- K)’ 

555 

(5.11) 

(5.12) 

Once we have calculated t it  is a straightforward matter to calculate the trajectory 
properties from (2.1)-(2.4), (4.4), (4.5), (4.7), (5.5) and (5.6). In the limit k+O, B+O, 
the expressions for (X, Y) yield ellipses. 

Immediately we note from (4.4), (4.5), (4.8), (4.9), (5.11) and (5.12) that c,T/A = 1 
for both case I b  and I I b  for all k when B = 0. Thus in this special case [X,]/A = 0 
and U,/c, = 0. 

We also wish to know the behaviour of the time-averaged drift velocity ratios U,/c, 
and U,/c, as a function of the mean displacement of a streamline from the free surface, 
(go-gc)/h, where yo = y(@ = 0) ,  yc = y($ = B). It is possible to perform the 
integration to obtain jj exactly and express the result in terms of elliptic integrals. 
But the resulting expression is extremely lengthy and the amount of algebra 
excessive. Thus this calculation was performed numerically with a standard integra- 
tion routine (NAGLIB DOlAJF). The integral converged well in all cases, even for 
case I b  with k nearly equal to 1. 

When k = 1 for case I b ,  the streamlines are ellipses 

(5.13) 

where a/h = tanB. The limiting wave occurs when tanB = 1. 
In this case, we can derive a simple exact expression for the quantity (go-&)/h,  

namely 
(5.14) 

6. Results 
We shall discuss the trajectory profiles and the time-averaged drift velocity ratios 

in both reference frames P and Q. 
For symmetric waves (case I b )  with k = 0.25, trajectory profiles are given in figures 

4 and 5. For the highest wave, B,,, = 2.014007, a/h = 0.713296, a/h = 5.703 143, 
[X , ] /h  = 7.943256 and [&]/A = 6.955806. This wave in frame P has trajectories as 
shown in figure 4. We present complete trajectories for BIB,,, = 1 and 0.75 in figure 
4(a) and for BIB,,, = 0.5, 0.35, 0.2, 0.1 and 0, together with part trajectories for 
B/B,,, = 1 and 0.75, in figure 4(b). In figures 5(a) and (b) we present the same 
particles as seen in frame Q. Immediately we see that as seen from frame P, particles 
travel further than the same particles viewed from frame Q. This emerges as a general 
characteristic of the relationship between the two frames. In  both frames, particles 
in the free surface travel large relative distances and that as B+O, the profiles 
become more elliptic. 

We now consider a thinner symmetric sheet (k = 0.99). For the highest wave, 
B,,, = 0.794411, a/h = 0.505016, a/h = 61997.51, [ X , ] / h  = 12.571 165 and 
[X , ] /h  = 2.048037. The particle trajectories in frame P are given in figure 6, for 
BIB,,, = 1, 0.5, 0.2 and 0. The considerable horizontal extent of the free-surface 
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(a) 

I " ' ' I ' ' ~ ~ ' ' ; ' ' ~ ' ~ ' ~ ' ~  I 
4.0 2.0 Y/A -2.0 -4.0 

B/ B,,, = 0.75 

1 -o'6 

-0.2 -0.4 

I ,  I , , ,  I+ 

0.4 0.: 
v ,  

FIGURE 4. (a) Particle trajectories for symmetric (k = 0.25) capillary waves along streamlines 
BIB,,, = 1 and 0.75 aa seen in frame P.  (a) Full trajectories for BIB,,, = 0.5, 0.35,0.2,  0.1 and 
0 together with part trajectories from figure 3 ( a )  as seen in frame P.  

trajectory (BIB,,) makes illustration of the lower streamline trajectories very 
difficult. All the trajectories have a closed-loop section which is minute on this scale. 
With respect to frame Q, the picture is somewhat different as is shown in figure 7. 
The free surface trajectory is almost an open ellipse with the lower streamlines nearly 
closed. For B = 0, the particle trajectory is completely closed unlike the very open 
trajectory for B = 0 as seen in frame P, figure 6. 

The cme k = 1 for symmetric waves can also be considered. For frame P, it is 
straightforward to show that c p t / h  is infinite for all B. In  fact for small k' we show 
that 

c t  4 - - Inz, 
A 

For frame Q the analysis is lengthier. We find, for k = 1, 

1 tan B(E(4)  + tanh 4) 
1 - E ( 4 )  tanh 4 tana B 

{ (2 sin2 B - 1) tan-' 
c t  P= 
A 16 sinS B cosa B 

tanh ;]I. (6.2) 
(1 + sin2 B sech2 4) 
(1 - sin2 B sech2 4) +sin B cos B E(4)  + [ 
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BIB,,,, = 1 0.2 
% 

0 - y .  

I " " I " " I " "  
I 

" " l " " l " " l " " I  
4.0 3.0 2.0 - 1.0 - 2.0 - 3.0 - 4.0 

4 .- . -\ 

- 
I I  I l l  0 - 1  I I , 1 1 1  1 I I I  

I 
I ,  

0.4 0.2 -0.2 - 0.4 

FIGURE 5. (a) As figure 4(a), aa seen in frame &. (6) As figure 4(6), as seen in frame &. 

FIGURE 6. Particle trajectories for symmetric (k = 0.99) capillary waves along Streamlines 
BIB,,, = 1, 0.5, 0.2 and 0 as seen in frame P. 

BIB,,,, = 1 

, , , , , ;y:, , , , , 
3 .O 2.0 1.0 YIA - 1.0 - 2.0 - 3.0 

FIGURE 7. As figure 6, for BIB,,, = 1,0.75, 0.5, 0.35, 0.2, 0.1 and 0 as Been in frame &. 

The highest wave has B = B,, = in and hence we find in this case the simple result 
that 

c T  
- = 3 ,  

h 

and hence that [&]/A = 2 and Uq/cq = %. 
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k a 
A 
- a 

h 
- &I 

A 
(4 
0 0.729 765 0 7.995564 
0.25 0.7 13 296 5.703 143 7.943256 
0.5 0.666 334 17.631 155 7.855508 
0.75 0.594 753 86.361 970 8.032096 
0.9 0.541 921 592.279268 8.881073 
0.99 0.505016 61997.506820 12.571 165 
1 0.5 co co 

0 0.729765 0 7.995564 
0.1 0.732467 2.503 347 7.826048 
0.25 0.747 825 4.016468 6.974659 
0.5 0.825805 6.135445 4.483467 
0.75 1.215003 9.325623 2.857 299 
0.854 2.612856 355.668607 11.054501 
0.858517 2.820646 co 13.168 644 

(b )  

U 

CP 

0.888834 
0.888 184 
0.887076 
0.889 284 
0.898 796 
0.926314 
1 

0.888834 
0.886 699 
0.874603 
0.817634 
0.740751 
0.917043 
0.929422 

2 [x,] 
A 

7.995564 
6.955806 
4.939884 
3.222850 
2.449 807 
2.048037 
2 

7.995564 
7.825 599 
6.956960 
4.188 386 
0.845 197 
0.000230 
0 

0.888834 
0.874 306 
0.831 647 
0.763 193 
0.7 10 129 
0.671 920 
0.666667 

0.888834 
0.886693 
0.874324 
0.807 262 
0.458 052 
0.000230 
0 

TABLE 1. Parameters for complete orbits of surface p rticles (a) in highest symme ric (case II 
capillary waves on fluid sheets; (b) in antisymmetric (case IIb) capillary waves. 

0. 
- 

-0.2 -0.4 

1 

FIGURE 8. Particle trajectories for antisymmetric (k = 0.25) capillary waves along streamlines 
BIB,, = 0.75, 0.5, 0.2 and 0 together with part trajectories for BIB,,, = 1 and 0.9 as seen in 
frame P. 

As pointed out by Kinnersley, care must be taken in this case as only half the wave 
is covered by 9 when k = 1. This is because sn 4 evaluated between the limits 0 and 
4K gives the value zero whereas for k = 1 we must evaluate tanhq5 between 0 and 
infinity, giving the value one. This difficulty is surmounted by using at least two 
regions of 9 and matching asymptotically. 



Nonlinear capillary waves on sheets of JEuid 559 

FIGURE 9. Particle trajectory for the antisymmetric (k = 0.854) capillary wave along free surface 
streamline aa seen in both frames P and &. 

The parameters for complete orbits of surface particles in the highest symmetric 
capillary waves on fluid sheets are given in table l(a), together with information 
relevant to the wave profile itself. The results for k = 0 are taken from Hogan (1984) 
and correspond to nonlinear waves on a fluid of infinite depth. 

We now consider antisymmetric waves (case IIB). For k = 0.25 we give some of 
the particle trajectories, as viewed from frame P, in figure 8. This contains complete 
trajectories for B/B,,, = 0.75, 0.5, 0.2 and 0 together with part trajectories for 
B/B,,, = 1 and 0.9. This is quite similar to figure 4(b) except that the lower 
streamline trajectories are almost elliptic with a vertical major axis (in the symmetric 
case, the major axis was horizontal). The case B = 0 is an almost closed figure of 
eight. The full trajectories for B/B,,, = 1 and 0.9 have not been given as they are 
relatively long and are very similar to  those of the symmetric wave for k = 0.25 in 
frame P. For the highest wave B,,, = 1.986029, a/h  = 0.747825, a/h = 4.016468, 
[Xp] /A  = 6.974659 and [X,]/h = 6.956960. 

We have not given the trajectories of the antisymmetric wave with k = 0.25 as seen 
from frame Q as they are almost identical to those as seen from frame P, since c p  rs c, 
in this cme. 

As k increases to the physical limit of 0.868617, the differences in the trajectories 
between the two frames become more marked. For k = 0.854, the highest wave 
has B,,, = 0.009685, a/A = 2.612856, a / h  = 355.6686, [ X p ] / h  = 11.054501 and 
[X,] /h = 0.000230. The trajectories for B = B,,, as seen from both frames P and 
Q are given in figure 9. Other trajectories are very similar and lead to confusion if 
superimposed. This is because B,,, is so small and the wave so thin. There is a tiny 
closed section in the trough of the trajectory as seen from frame P. 

For both wave symmetries we have omitted one half of the complete trajectory. 
Thus for symmetric waves a simple inversion of the trajectories as given in figures 
4-7 is required. For antisymmetric waves, the trajectories of figures 8 and 9 should 
be translated by & [X'j/2h and then inverted. 

We now consider the behaviour of the time-averaged drift velocity ratio Up/cp  as 
a function of (go-&)/A. Figure 10(a) contains the results for symmetric waves. The 
case k = 0 is included for reference. The case k = 1 consists of a vertical straight line 
along Up/cp  = 1 between (go -&) /A  = 0 and -@. Clearly as the sheet becomes 
thinner the drift velocity ratio increases along the centre streamline. The behaviour 
at the free surface is more complicated, with an initial decrease from the value 
0.888834 at k = 0 followed by an increase up to U p / c p  = 1 at k = 1. It is remarkable 
how little change there is in Up/cp from k = 0 to k = 0.9, at least for (gO-gc)/A 
between 0 and -0.4. 
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FIQURE 10. (a) Drift velocity ratio UJc,  as a function of the mean displacement of fluid particles 
(&- j io) /A for symmetric capillary waves (k = 0, 0.1,0.25, 0.5, 0.75, 0.9,0.99, 0.995 and 1). (a) As 
figure 10(a), for antisymmetric capillary waves (k = 0, 0.1,0.25,0.5,0.6,0.7,0.75,0.8,0.854). The 
point marked 0 corresponds to the limiting caea k = 0.858517. 
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F’IQUBE 11. (a) As figure 10(a) for U,/cq. (b)  As figure 10(b) for Uq/cq. 

Figure 10(b) contains results for antisymmetric waves, again with the case k = 0 
included for reference. Here the behaviour is more complicated than in figure 10 (a). 
Although a little difficult to determine on this scale, there is a non-zero drift of the 
centreline for k = 0.1 and 0.25. For k = 0.5, the surface drift has decreased but the 
centre drift has increased considerably. At  k = 0.75, the coordinates of the free 
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surface have undergone a change that leads to an increase in the surface value of 
(go-&)/h. Specifically the y-coordinates of particles near the crest have begun to 
increase after a gradual decrease from k = 0 whereas the y-coordinates of particles 
near the trough have continued to increase. In  fact the wave profile has an almost 
constant thickness along its length and so Up/cp  is nearly constant. Then physical 
constraints begin to act and at k = 0.854, the sheet is very thin, of almost uniform 
thickness and U,/c, is constant to within 0.005 % . At the limit, the value of Up/cp  is 
0.929422. 

We now consider the behaviour of Uq/cq. As with U,/c,, the case k = 0 is included 
for reference. For symmetric waves, we present the results in figure 11 (a). The case 
k = 1 extends from the point [Uq/cq, (gO-gc ) /A]  = (g, 0) to the point (0, -$). In  
general the free-surface values of Uq/cq decrease monotonically. It is difficult to 
distinguish the cases k = 0.99 and k = 0.995, unlike in figure 10 (a). 

The results for Uq/cq for antisymmetric waves are given in figure 11 (b). The case 
k = 0.854 does not show up on this scale. The limiting case k = 0.858517 is at the 
origin. 

We note that between figures 10 and 11, the values of (go - gJ /h  are unchanged, 
being dependent on k rather than c p  or cq. 

The classical result (Stokes 1847 equation (24)) was derived for the symmetric case 
only. The order of the approximation was such as explained by Stokes, that either 
definition cp  or cq of the phase velocity could be used. Thus he found 

U U ~ ~ c o s h [ ( 4 ~ / h ) ( y - h ) ]  P=P= 

CP cq 2 sinh2 [2xh/h] 6) * 
We find that this result overpredicts considerably not only at the free surface as 

found in Hogan (1984) but also for the centreline drift. 

7. Discussion 
We have generalized the work of Hogan (1984) to examine the effects of finite 

depth on the trajectories of pure capillary waves. We used the exact solutions for 
the wave profiles derived by Kinnersley (1976). We have extended and amended his 
work. In  particular we have presented highest waves in graphical form, using an 
explicit criterion derived by us. We have also shown that the phase velocity does not 
equal Kinnersley’s constant c .  In  this way the ‘essentially nonlinear’ waves of 
Kinnersley are shown to have been misinterpreted. In  fact instead of a strong 
dependence on wave steepness, the phase speed of these limiting waves turns out to 
be zero according to either of Stokes’ definitions. 

In  frame P, for both types of wave on a fluid sheet, a decrease in sheet thickness 
leads to a non-monotonic behaviour in global trajectory properties. The relative 
distance travelled [X , ] /h  at first decreases from the infinite depth result and then 
increases again as the sheet thickness decreases. For symmetric waves, the increase 
is without limit whereas for antisymmetric waves there is a physical cutoff. A similar 
pattern holds for Up/c ,  except that for symmetric waves the limit is equal to one and 
for antisymmetric waves, slightly less than one. 

In  frame &, the behaviour is monotonic. Thus, [ X q ] / h  at the free surface decreases 
from 7.995564 a t  k = 0 to 2 at k = 1 for symmetric waves and to zero for 
antisymmetric waves. Similarly Uq/cq decreases from 0.888 834 at k = 0 to $ at k = 1 
for symmetric waves and to zero for antisymmetric waves. 

Physically it is difficult to imagine that the limiting cases can be sustained. In 
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particular Matsuuchi (1974) has shown that the wavetrains are modulationally 
unstable. His analysis is not valid for arbitrary steepness or arbitrary perturbation 
wavelength. Viscosity and surface tension gradients will affect the behaviour as 
discussed in Hogan (1984). 

The propagation of waves over a solid boundary can be modelled by using the top 
half of the symmetric solution with the boundary coincident with the dividing 
streamline. Here however boundary-layer development may well affect our conclu- 
sions, growing quickly to swamp the inviscid core region when the sheet thickness is 
small. Nevertheless, these results may be of interest for wave propagation in thin 
films of fluid adhering to pipe walls. We conclude that particles can move enormous 
relative distances at high average speed along a pipe wall throughout the film 
thickness, rather than just at  the surface. 
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